I had seen the function idata.frame in plyr before, but not really tested it. From the plyr documentation:
“An immutable data frame works like an ordinary data frame, except that when you subset it, it returns a reference to the original data frame, not a a copy. This makes subsetting substantially faster and has a big impact when you are working with large datasets with many groups.”
For example, although baseball is a data.frame, its immutable counterpart is a reference to it:
> idata.frame(baseball)
<environment: 0x1022c74e8>
attr(,"class")
[1] "idf" "environment"
Here are a few comparisons of operations on normal data frames and immutable data frames. Immutable data frames don’t work with the doBy package, but do work with aggregate in base functions. Overall, the speed gains using idata.frame are quite impressive - I will use it more often for sure.
Here’s the comparisons of idata.frames and data.frames:
# load packages
require(plyr)
require(reshape2)
# Make immutable data frame
baseball_i <- idata.frame(baseball)
Example 1 - idata.frame more than twice as fast
system.time(replicate(50, ddply(baseball, "year", summarise, mean(rbi))))
user system elapsed
8.509 0.266 8.798
system.time(replicate(50, ddply(baseball_i, "year", summarise, mean(rbi))))
user system elapsed
7.233 0.025 7.334
Example 2 - Bummer, this does not work with idata.frame’s
colwise(max, is.numeric)(baseball) # works
year stint g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf
1 2007 4 165 705 177 257 64 28 73 NA NA NA 232 NA NA NA NA NA
gidp
1 NA
colwise(max, is.numeric)(baseball_i) # doesn't work
Error: is.data.frame(df) is not TRUE
Example 3 - idata.frame twice as fast
system.time(replicate(100, baseball[baseball$year == "1884", ]))
user system elapsed
1.329 0.035 1.378
system.time(replicate(100, baseball_i[baseball_i$year == "1884", ]))
user system elapsed
0.674 0.015 0.689
Example 4 - idata.frame faster
system.time(replicate(50, melt(baseball[, 1:4], id = 1)))
user system elapsed
7.129 0.506 7.691
system.time(replicate(50, melt(baseball_i[, 1:4], id = 1)))
user system elapsed
0.852 0.162 1.015
And you can go back to a data frame by
d <- as.data.frame(baseball_i)
str(d)
'data.frame': 21699 obs. of 22 variables:
$ id : chr "ansonca01" "forceda01" "mathebo01" "startjo01" ...
$ year : int 1871 1871 1871 1871 1871 1871 1871 1872 1872 1872 ...
$ stint: int 1 1 1 1 1 1 1 1 1 1 ...
$ team : chr "RC1" "WS3" "FW1" "NY2" ...
$ lg : chr "" "" "" "" ...
$ g : int 25 32 19 33 29 29 29 46 37 25 ...
$ ab : int 120 162 89 161 128 146 145 217 174 130 ...
$ r : int 29 45 15 35 35 40 36 60 26 40 ...
$ h : int 39 45 24 58 45 47 37 90 46 53 ...
$ X2b : int 11 9 3 5 3 6 5 10 3 11 ...
$ X3b : int 3 4 1 1 7 5 7 7 0 0 ...
$ hr : int 0 0 0 1 3 1 2 0 0 0 ...
$ rbi : int 16 29 10 34 23 21 23 50 15 16 ...
$ sb : int 6 8 2 4 3 2 2 6 0 2 ...
$ cs : int 2 0 1 2 1 2 2 6 1 2 ...
$ bb : int 2 4 2 3 1 4 9 16 1 1 ...
$ so : int 1 0 0 0 0 1 1 3 1 0 ...
$ ibb : int NA NA NA NA NA NA NA NA NA NA ...
$ hbp : int NA NA NA NA NA NA NA NA NA NA ...
$ sh : int NA NA NA NA NA NA NA NA NA NA ...
$ sf : int NA NA NA NA NA NA NA NA NA NA ...
$ gidp : int NA NA NA NA NA NA NA NA NA NA ...
idata.frame doesn’t work with the doBy package
require(doBy)
summaryBy(rbi ~ year, baseball_i, FUN = c(mean), na.rm = T)
Error: cannot coerce type 'environment' to vector of type 'any'
But idata.frame works with aggregate in base (but with minimal speed gains) and aggregate is faster than ddply
system.time(replicate(100, aggregate(rbi ~ year, baseball, mean)))
user system elapsed
4.998 0.346 5.373
system.time(replicate(100, aggregate(rbi ~ year, baseball_i, mean)))
user system elapsed
4.745 0.283 5.045
system.time(replicate(100, ddply(baseball_i, "year", summarise, mean(rbi))))
user system elapsed
13.293 0.042 13.428